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Abstract

At a glance, the human visual system transforms complex retinal images into
generic feature representations useful for guiding a wide range of behaviors. Here,
we provide evidence that the feature representations embedded in purely feed-
forward neural networks are sufficient to explain seemingly high-level human
judgments: in this case, the stability of randomly arranged block towers. To do
this, we first show that we can linearly decode stability from the features of two
deep neural networks – a supervised network trained on ImageNet, and a varia-
tional autoencoder trained only to reconstruct images of block towers from various
perspectives – neither of which were ever taught stability per se. We then derive
a set of image-computable features to use as predictors of performance, finding
that the stability judgments of both human subjects and the neural net decoders
are best predicted by the same feature. Our findings suggest overall that at least
some aspects of seemingly higher-level reasoning in a now paradigmatic intuitive
physics task may be grounded in direct readouts of purely perceptual features.

1 Introduction

In a fraction of a second, humans can extract surprisingly sophisticated information: the trustworthi-
ness of a face, the centroid of complex shapes, and – directly relevant to the present work – even the
stability of a tower of randomly arranged blocks [4]. In some cases, this extraction takes less than
a 20th of a second. The speed at which we can decode these bits of meaning in general is taken as
evidence that the decoding happens not at the level of some abstract cognitive process, but directly in
the rapid cascade of perceptual processing that occurs immediately after the presentation of a stimulus.
This ‘feedforward’ processing – predominantly encapsulated from computations performed elsewhere
in the brain – we now increasingly model using ‘feedforward’ deep neural networks. These networks,
while diverse in form and function, are by and large trained on some variant of a singular class of
task: the nonlinear regression of raw inputs (pixels, waveforms, words and numbers) onto various
predictors. This class of task goes by many names, depending on the context and community in which
it’s used, but perhaps most relevant to human behavior is the name statistical pattern recognition.

A growing body of evidence suggests that the pattern recognition done by deep neural networks is a
superlative model of the pattern recognition done in biological cortex, and that the representations
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these networks learn tend to correspond strikingly well with biological reality [1, 16, 13]. But are these
networks useful as models of judgments that extend beyond the typical purview of sense-percepts?
How do they fare in purportedly more complex domains, such as intuitive physical reasoning?

Given the complexity and latent structure of the physical world, predominant models of intuitive
physics posit that our intuitive physical capabilities are at their core the product of a cognitive
architecture that includes a more or less complete ‘physics engine’, akin to the kind deployed in
video games and computer graphical animation [2, 15]. Many of these models are innately equipped
with effectively all the parameters necessary to perform complex simulations of physical scenarios
in real time. Inference in this formulation is accomplished by iteratively and repeatedly sampling a
simulator – primed by perception but powered (sometimes exclusively) by cognition.

In the current report, we explore an alternative model of intuitive physics based on the pattern
recognition capabilities of deep neural networks, wherein physical inference is reformulated as a
problem of identifying those perceptual features that serve as optimal proxies for the real physical
properties that produce them. Previous work [3, 11, 17] has mainly focused on training networks end
to end in a fully supervised fashion, developing features directly for explicitly physical targets. Here,
we explore another possibility: that features learned by deep neural networks trained for other tasks
may nevertheless encode physically relevant properties that serve as the basis for physical inference.

2 Methods

To test this hypothesis, we fit linear classifiers of stability on the learned features of two model
classes: a supervised neural network trained only on image recognition with ImageNet, and an
unsupervised neural network trained only to reconstruct images of block towers (never with provision
of the groundtruth stability). We then compare the responses of these classifiers to those of human
observers using a set of stimulus-computable features meant to disambiguate not only whether neural
net decoders can adequately gauge stability, but how.

2.1 Stimulus Set

Adapting a technique specified by [17], we generated an image dataset of stacked blocks, all of the
same size (1m3), with enough horizontal jitter in each block’s position that towers had a 50/50 chance
of falling. We varied the number of blocks from 2-6. The groundtruth for whether a tower will fall
can be determined by computing at each junction of blocks the mean position (centroid) of all the
blocks above the junction and comparing it to the centroid of the block beneath. If the centroid of the
blocks above extends beyond the edge of the block beneath (at any junction), the tower should fall.
(We confirmed this groundtruth calculation with forward simulations of the animator producing our
images). In one of two datasets we generated with this method (called ‘Perspective’), we allow some
variance in the camera. In the other (called ‘Direct’), we situate the camera directly in front of the
blocks, with the camera focused directly at the tower’s center.

2.2 Behavioral Tasks

Human subjects (N = 81, from Amazon Mechanical Turk) were shown a series of towers (100 stable,
100 unstable, 200 total, randomized in order of presentation) and given a binary forced choice task,
designating each tower as stable or unstable. In the conditions relevant to this analysis, we put no
time limit on the presentation of the stimuli, nor did we constrain response times. Tower sizes varied
across subjects, but each subject rated only one size.

2.3 Models & Modeling Tasks

For our supervised image recognition network, we used Resnet18 [6] pre-trained on ImageNet as a
fixed feature extractor, freezing all the layers of the network except the batch normalization layers –
a technique that maintains the integrity of the features learned by the convolutional and nonlinear
filters of the network, but accounts for vacillations in the statistics of the image set currently being
processed [7]. For our unsupervised image reconstruction network, we used a variational autoencoder
[8] with a randomly initialized Resnet18 [6] as the encoder and a latent space of 128 dimensions,
trained on the full range of block tower sizes in the ‘Perspective’ dataset (roughly 5000 images per
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tower size, 25,000 images total) using a mean squared error reconstruction loss and a generative
adversarial loss function [12, 5] in place of the standard Küllback-Liebler divergence, allowing the
model to ‘learn’ the variational prior (a Gaussian) imposed on it. Importantly, and in contrast to other
approaches that attempt to disentangle certain properties in the latent space using techniques like
minibatch discrimination [9], we leave the latent space of our autoencoder fully entangled.

For both our image recognition and image reconstruction models, we decoded stability from the
outputs of the last convolutional layer using a multilayer linear perceptron, trained on the ‘Direct’
dataset with Adam optimization and a cyclical learning rate deduced from search [14]. We used the
last convolutional layer of these networks (rather than the fully connected layer or 128-dimensional
latent space) to maintain architectural consistency across our feature extractors. For any given size of
tower, we held the process of feature extraction constant, but varied the process of linear decoding,
always training and testing the classifier on the same size of tower. Classifiers fit on both the image
recognition network and the image reconstruction network were trained using features from 25,000
towers per tower size and tested on the benchmark towers of the same size rated by human subjects
(200 images per tower size; 1000 total). Crucially, we reserved the set of images from the human
behavioral studies as a test set. Neither model ever trained on these images prior to evaluation. We
reinitialized and fit classifiers 5 times per tower size, resulting in a total of 50 classifiers (25 for
the image recognition model and 25 for the image reconstruction model). We treated each of these
classifiers as individual subjects, comparable directly to our human subjects. All analyses were
identical across human and machine.

2.4 Feature Analysis

For each stimulus in the test set, we considered 12 hypothetical features a human or machine might
use to accomplish the task. The features differ in whether they emphasize local information, or
statistical information aggregated over multiple local measurements. Importantly, they also differ in
how well they approximate the groundtruth stability of a given tower. Each feature is quantifiable
in the sense that it constitutes some property of the visual array and differs across exemplars, but
contains no explicitly physical information (e.g. the mass of the blocks, or the force of gravity).
Below are more detailed descriptions of each of the 12 features we used in our analysis.

• Configural deviation: the mean and max values for the distance of each block from the
centroid of all the blocks above it. The max value of this feature is a perfect predictor of
groundtruth in that any value beyond a given threshold (half the width of a block) means the
tower will fall. Any value below that threshold means the tower will remain upright.

• Local (pairwise) deviation: the mean and max values for the distance of each block in the
tower from the block above it, irrespective of other blocks.

• Global deviation: the mean and max values for the distance of each block from the overall
centroid of the tower (the centroid of all the blocks considered together).

• Number of instabilities: the number of junctions in the tower shown by groundtruth calcula-
tions to be unstable. This feature is also a perfect predictor of groundtruth, in that any value
of 0 means the tower is stable and any value above 0 means the tower is unstable.

• Percent unstable: the number of unstable junctions in the tower as a proportion of the total
number of junctions. Like number of instabilities (and for the same reasons) this feature is
another perfect predictor of groundtruth.

• Horizontal extent: The horizontal distance from the right edge of the rightmost block in the
tower to the left edge of the leftmost block in the tower: the tower’s width.

• Vertical extent: The vertical distance from the bottom edge of the bottommost block to the
upper edge of the uppermost block: the tower’s height.

• Alignment distance: the numerically determined minimum distance each block must be
moved to return the tower to a perfectly stable configuration, wherein each block is perfectly
aligned with the others.

• Minimum distance to stability: the minimum each block must be moved to return the tower
to a minimally stable configuration, wherein there are no unstable junctions. Because a
value of 0 means the tower is already stable, and any value above 0 means the tower is
unstable, this feature is a yet another perfect predictor of groundtruth.

3



To determine which of our hypothesized features was most predictive of performance, we used
a combination of penalized regressions, random forest variable importance analysis and receiver
operating characteristic curves. In the case of penalized regression, we simultaneously fit three types
– ridge, lasso and single-component partial least squares – to assess the reliability of each feature as a
predictor of performance and to mitigate what was often the high multicollinearity of the features
considered together. Each regression was fit to predict the response of a given set of subjects (either
human or machine) to each image using as predictors the full suite of feature values for that image.
In the case of the lasso and ridge regression, we designated the winning feature as the feature with
the largest coefficient following the cross-validated regularization procedure. In the case of partial
least squares, we considered both the largest coefficient and the largest influence on the projection
(effectively equivalent to the largest loading on the first component in a principal component analysis).
For the random forest variable importance analysis, we once again required the model to predict the
individual responses of a given subject type using the full range of features for each image, arbitrating
the most predictive feature by its mean decrease in accuracy and mean decrease in Gini coefficient
(a measure of how much a given variable streamlines the decision tree). Finally, for the receiver
operating characteristic curves, we fit a series of mixed effects logistic regressions individually for
each feature, once again predicting individual responses to each image. The logistic regression with
the highest area under the curve we designated as the most predictive feature of performance.

While these analyses often converged on the same feature, this was not always the case – a byproduct
to some extent of the multicollinearity inherent to the feature space. Where the analyses diverged, we
designated the most predictive feature as the feature that ranked highest in the majority of analyses
with an overall score marked as the number of metrics in agreement divided by the total number of
metrics – a total of 7 (4 penalized regression measures, 2 random forest variable importance measures,
1 area under the curve).

3 Results

3.1 Overall Performance

Human performance was generally high for the full range of blocks in the range we tested (with
roughly 84% accuracy on average). The performance of the linear classifiers trained on features from
the ImageNet-pretrained Resnet18 (henceforth ‘Resnet18-ImageNet’) and the Resnet18 embedded
in the autoencoder (henceforth ‘Resnet18-Autoencoder) both produced slightly higher performance
(with 87.7% and 86% average classification accuracy, respectively). The higher performance of the
models seems almost certainly to be a product of the larger quantity and diversity of examples in the
training set, a number we could theoretically reduce to more closely approximate human performance
– albeit with some caveats (see Appendix). A linear regression of accuracy on tower size unveiled a
slight, but significant negative slope for both humans (b = -0.024, p < 0.001) and machines (b = -0.03,
p < 0.001 & b = -0.046, p < 0.001 for Resnet18-ImageNet & Resnet18-Autoencoder, respectively) –
suggesting that an increased difficulty of classification with larger and larger tower sizes was a trend
shared across all the subject types we tested (Fig. A.1 in Appendix).

3.2 Feature Analysis

The feature most predictive of human performance was the maximum configural deviation – the
maximum distance of any block from all the blocks above it, ranked highest in 6 out of 7 metrics
(with the mean configural deviation providing the largest decrease in accuracy for the random forest
variable importance analysis). This feature alone explains 91.6% of the variance in human responses.

The feature most predictive of Resnet18-ImageNet and Resnet18-Autoencoder’s performance’s was
also the maximum configural deviation, ranked highest in 6 out of 7 metrics for both models (with
the maximum global deviation – the maximum distance of each block from the overall centroid of the
tower – proving slightly more predictive in terms of the random forest’s mean decrease in accuracy;
see Appendix D & E). The maximum configural deviation explains 94.7% of the variance in the
responses of of Resnet18-ImageNet and 93.9% of the variance of Resnet18-Autoencoder (Fig. 1)
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Figure 1: Psychophysical curves of human and machine performance in the block towers task
predicted by the maximum configural deviation. On the x axis is the maximum configural deviation,
ranging from perfectly stable at the lower end to very unstable at the upper end. On the y axis is the
machine’s confidence and the proportion of subjects choosing ‘stable’.

4 Discussion

The success of our linear classifiers in decoding the stability of block towers from the features of
supervised and unsupervised deep neural networks is not evidence that they have learned the same
representations present in human perceptual systems: decades of cognitive science have shown those
representations to be more rich, more flexible and more robust than the representations we have
explored here. What the success of our linear classifiers does mean is that there exists some linear
mapping between the purely perceptual representations learned by a deep neural network and the
representations powering the inferences of human subjects in a task traditionally conceptualized as
requiring a heavy dose of higher-order abstraction. While this work does not arbitrate on the capacity
for such abstraction, it does suggest we may not always need it – and that statistical shortcuts via
perceptual features may well trump fully fledged simulation in the pinch of computational pressure.
All this to say, we may not always need physics to make physical inferences.

Future work will attempt to further complete the cartography of correspondence between human
and machine by pushing and plying how we learn the representations we do, and probing why,
despite immense divergences in the material substrate on which these algorithms are instantiated,
the correspondences persist. The autoencoder we have included here – though in many ways an
undercomplete example precisely because of its highly constrained, synthetic input space – is a nod
to the necessity of rethinking how our perceptual systems are tuned, and what features they might
develop in the process of the tuning. The more kaleidoscopic our representational palette, the more
robust it is to the uncertainties and perturbations we invariably encounter, and the more conducive to
a properly calibrated response.
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Appendix

A What of the ‘Superhuman’ Performance?

Figure A.1: Overall performance of humans and machines on the block towers test set. Error bare are
95% confidence intervals. Chance accuracy is 50%.

The superhuman performance of our classifiers (Fig. A.1) is in some ways one of the more striking
bits of evidence against the hypothesis that humans and machines are similar. We might temper
this evidence with two considerations: one, in only about 60% of the classifiers we trained does
performance extend beyond the upper bound of human ability (14 / 25 classifiers for the Resnet18-
Autoencoder; 19 / 25 classifiers for the Resnet18-ImageNet) and statistically significant differences
are observed overall in only in the first two sizes of tower; two, the representations formed by the
networks are at the moment relatively noiseless. Human representations suffer a wide variety of
noise that make estimates of properties critical to inference (like the centroid of the blocks) more
difficult to ascertain, and once ascertained, to maintain. Rather than brutishly decreasing the overall
performance by training them less, we could use our understanding of the noise in human estimates
to engender harder trials for our fully trained machine, lowering the performance to human levels by
adding the stuff of human error.

B Item-Level Analysis

Is an image that’s difficult for human subjects also difficult for machines? To answer this question,
we correlated the aggregate responses of human subjects to each individual image (a proxy measure
of difficulty in which harder images should be marked by less consensus than easier images) with the
softmax probabilities produced by the decoders on the same set of images. Because the behavioral
task was binary forced choice, we can measure consensus in terms of subjects choosing ’stable’
or subjects choosing ’unstable’. In this case, we targeted the choice of "stable", correlating the
proportion of subjects labeling a given stimulus as ‘stable’ with the model’s softmax probability
of ‘stable’ – a number between 0 and 1 interpretable more or less as the model’s confidence that
the stimulus in question was in fact ’stable’ (Fig. 1, though see [10] for further discussion). The
logic here is that the lower the consensus among human subjects as to whether a given stimulus
was stable, the lower the model’s confidence should be in its prediction. Confirming this logic, the
Pearson correlation of human agreement scores and Resnet18-ImageNet’s softmax probabilities was
markedly high (r = 0.814, p < 2.2e-16); the same correlation with Resnet18-Autoencoder’s softmax
probabilities was only slightly lower (r = 0.8, p < 2.2e-16). These correlation coefficients suggest a
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significant degree of overlap between the images humans found difficult and the images the model
found difficult, though we note these coefficients may be somewhat inflated by the high performance
overall of both human and machine.

C Interpolations in the Latent Space of the Autoencoder

In addition to developing representations powerful enough to undergird the explicit decoding of
stability by a linear classifier, the Resnet18-Autoencoder we trained seemed also to develop strong
implicit representations of stability, as evidenced by interpolations in the model’s latent space that
produced smooth generative samples in the transition from an unstable tower to a perfectly stable
tower – an ‘idealized’ tower entirely absent from the network’s training set (Fig. C.1).

Figure C.1: Interpolations between an unstable tower and a perfectly stable tower in the latent space
of a variational autoencoder never given stability labels. The image on the left was the only image
not generated by the decoder.

These implicit representations may represent an inroad to exploring simulation not as abstract
operations on graphically vectorized, probabilistic game engines, but as interpolation in learned
feature spaces, where the distance between various representations can be leveraged to power more
sophisticated types of inference beyond mere classification – inferences like the prediction of future
physical states from current sensory input.

D On the Relationship Between Performance and Features

Given the generally high accuracy in stability judgments across humans and machines, is it in-
evitable that max configural deviation (a perfect predictor of groundtruth stability) would best predict
performance? This might be the case were it not for the presence of three other features in our
feature set that also perfectly predict stability – the number of instabilities, percent unstable and
minimum distance to stability – as evident in their achieving an area under the curve of exactly 1.0
when used individually as predictors in logistic regressions predicting groundtruth itself (instead of
individual choice, as in the main analysis). While the relative contributions of these features cannot
be determined if accuracy is at 100%, our analysis suggests that gradations in performance below
100% are better predicted by max configural deviation than these other ground-truth indicators.

E Confirming the Most Predictive Feature of Model Performance through
Targeted Disentanglement

To confirm that the maximum configural deviation was the most predictive feature of model perfor-
mance not because of some statistical fluke, but for deeper structural reasons, we attempted to more
systematically disentangle it from the second most predictive feature of model performance: the
maximum global deviation (the maximum distance of each block from the overall centroid of the
tower). To do so, we attempted (inasmuch as the variance our synthetic dataset allowed) to choose
subportions of a held-out dataset wherein one of the two values was held constant while the other
was left to vary. We succeeded in producing two new test sets, each controlling for one of our two
features of interest. In the test set controlling for the maximum configural deviation, we achieved
a relatively even balance of tower sizes and groundtruth stability by selecting blocks that varied
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±0.57% of the range of maximum configural deviation values in the full dataset. (A more intuitive
sense of this narrowed variance is to think of it in terms of the width of the blocks, in which case this
value represents about ±0.75% the width of a block or 0.0075m3, arguably a perceptually negligible
distance). In the test set controlling for the maximum global deviation, we achieved a similarly even
balance of tower sizes and groundtruth stability by selecting blocks that varied ±0.17% of the range of
maximum global deviation values (or about ±0.0025m3, in terms of block width). We combined these
test sets to create a new benchmark set of 400 images total (200 stable, 200 unstable, with between
25 and 50 images per tower size per groundtruth stability). We then evaluated each of our pretrained
classifiers on this new benchmark set (recording responses only to the tower sizes on which they’d
been trained). Given their similar profiles in the initial feature analysis, we combined the classifier
responses from both of our feature extractors (Resnet18-ImageNet & Resnet18-Autoencoder) into
one aggregate set of response profiles.

To gauge how predictive each of our two features was when controlling for the other, we calculated
their areas under the curve in a series of logistic regressions regressing the choice of stable on the value
of the target feature. The results of this test confirmed that that classification was more dependent on
maximum configural deviation than maximum global deviation: the area under the curve was .81
for maximum configural deviation (holding global deviation constant), and .606 for the maximum
global deviation (holding configural deviation constant). To confirm this difference, we conducted a
bootstrapping analysis in which we resampled the responses of our classifiers (maintaining the same
proportion of tower sizes and groundtruth stability across samples) and recorded the difference in
area under the curve for each resampling. This analysis produced a mean bootstrapped difference of
.175 (SD = .054). Only one of these thousand differences was negative (p = .001).

While controlling for one feature does not by any means guarantee that we’ve controlled for the
rest, the results here do suggest that the penalized regressions and variable importance functions we
described in the main analysis are plausible in their indication of the maximum configural deviation
as the most predictive feature.

F On Generalization

The most common objection to the use of neural networks in the modeling of human cognition is
their inability to ‘generalize’ outside of their training set. While this might be a valid criticism of
neural networks more generally, when it comes to the modeling of human behavior more specifically,
the criticism is somewhat less applicable. Each of the models we have trained here is meant to act as
a standalone model of a given human behavior – in this case, stability judgments for a specific size of
tower in a specially contrived artificial world — a self-contained umwelt. It is no different in this
sense than a model fabricated by hand, in which the parameters set for a given experiment will rarely
transfer unperturbed to an entirely new experiment. Even the intuitive physics engine designed by
[17] was initialized with a host of parameters specific to the block towers task – including a ‘poke’
parameter that applied a lateralized force to the block towers during the course of simulation. We are
not seeking to claim that the neural networks we have trained here are models of intuitive physics writ
large, only that they capture a significant degree of explainable human performance in a paradigmatic
intuitive physics task and have the major advantage of being image-computable.

It’s worth clarifying here what generalization could mean in the context of fixed feature extraction,
the method we’ve attempted here. Rather than creating a highly specific set of what might be called
‘stability detectors’ through end to end training (‘stability detectors’ a moniker we could confer only
by more directly measuring the response profiles of individual artificial neurons, and even then only
with some imagination), fixed feature extraction constrains our classifiers to figuratively ‘work with
what they’ve got’. ‘What they’ve got’ in the case of Resnet18-ImageNet especially is a set of features
tailored for image recognition across a million, often highly divergent images. It is unlikely in the
space of features learned by this model that there exist ’stability detectors’ specific to our dataset.
What is more likely is that there exist myriad feature combinations that higher-order inference can
leverage to arbitrate various visual categories across a wide variety of inputs, and that some of
these categories (like stability) may also be physical. In this sense, the combination of fixed feature
extractor and linear classifier (often the formula for many of the ‘transfer learning’ tasks popular
in modern machine learning) is in itself a test of the generalizability of features learned for natural
image recognition to an almost entirely novel, synthetic domain.
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Admittedly, this is just one of many possible interpretations of generalization. Generalization in
the broadest sense is a decidedly ambiguous term, with numerous definitions that make it more or
less plausible that human agents, as is often touted, generalize any more than the most massively
over-fitted neural networks. The deepest ambiguity in the contest over generalization seems to be
between interpolation within a domain of experience (e.g fitting a missing puzzle piece in a relatively
complete board) and extrapolation outside that domain (e.g. predicting the contents beyond the
edge of the puzzle), the former a perfectly reasonable behavior to expect of finite models, the latter
decidedly less so. In future work, we intend to explore both the extent to which deep neural networks
interpolate within their range of experience (e.g guessing the stability of 4 block towers when trained
on 3 and 5) and the extent to which humans truly extrapolate outside their range of experience (e.g
grappling with the physics of block towers made of 4D tesseracts instead of 3D cubes).
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