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Introduction CNNs are color-driven when both color and form are present in training How do we get a CNN to become form-driven?
Humans can perceive objects by their Feature Reliance . Error Patterns Idea Local Strategy : BagNets
global shape, despite local variations : | o | Brendel & Bethge, 2019
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DNNs are emerging as de-facto models of human
perception, but are known to be biased towards

local information, leading to an algorithmic gap §so . ANEEE BN AN BEEE
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BagNets can only take a local-strategy to solve a task
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Challenge DVCL - Divergence Variance Covariance Loss Disentangling color-vs-form processing using DVCL
How can we get a model to see global shape?
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What exactly is global shape* DVCL encourages CNN and BagNet to learn orthogonal intermediate features

Solution | CNN Training

Diverge from a local solution and examine what
emerges? Global Shape?

Experimental Setup

Digit Classification in Colored MNIST
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DVCL = a(Divergence Loss) + B(Variance Loss) + y(Covariance Loss) Epoch
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Digit Classification * stop-grad in BagNet allows it to “soak up” all the possible local features that it can Epoch
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Feature Reliance and Error
Patterns for CNN and BagNet

DVCL reduces with training
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Pre-Shuffling Labels
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Conclusion

* By making a CNN
orthogonal with
Bagnet (local model),
we can encourage it to

do global processing

» Can this strategy be
scaled on naturalistic
datasets to develop
models with better
shape representations?
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