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Introduction 

Experimental Setup

CNNs are color-driven when both color and form are present in training

Digit Classification

Digit Classification in Colored MNIST

Humans can perceive objects by their 
global shape, despite local variations

DNNs are emerging as de-facto models of human 
perception, but are known to be biased towards 
local information, leading to an algorithmic gap 

between humans and models.
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 Feature Reliance Error Patterns

How do we get a CNN to become form-driven?

Color+Form Present

Color Removed

Form Removed

only 5 px is visible in late-
stage Bagnet units

Conv. BackboneImage (28x28)

“3”

fully-conv MLP

Pre-Shuffling: Label 4 Post-Shuffling: Label 3

Breaking the color-label association systematically, 
while retaining the form-label association Selectively removing color or form post-training

 Feature Reliance and Error 
Patterns for CNN and BagNet

0
1
2
3
4
5
6
7
8

9
0 1 2 3 4 5 6 7 8 9

Post-Shuffling Labels

Pr
e-

Sh
uffl

in
g 

C
ol

or
s

Shuffled Color Pattern

Color-label 
Association 
during training

Color-label 
Association 
after training

Local Strategy : BagNets
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Model relied on color features for digit 
classification
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Misclassifications are in accordance to color-
label associations seen during training

Form-driven?

Color-driven?

DVCL encourages CNN and BagNet to learn orthogonal intermediate features

1) Divergence Loss: to 
get different features

2) Variance Loss: to 
prevent collapse

3) Covariance Loss:  
sparse features

DVCL = ⍺(Divergence Loss) + β(Variance Loss) + 𝛄(Covariance Loss)

Conclusion
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Disentangling color-vs-form processing using DVCLDVCL - Divergence Variance Covariance Loss
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Training
DVCL reduces with training

Both models get trained 
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Confusion Matrix

•By making a CNN 
orthogonal with 
Bagnet (local model), 
we can encourage it to 
do global processing

•Can this strategy be 
scaled on naturalistic 
datasets to develop 
models with better 
shape representations?
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Changes in Texture Changes in Context

This bias is linked to the problem 
of shortcut learning spurious 
correlations, making models 
brittle as compared to humans

Human Decision : Elephant

How can we get a model to see global shape? 
What exactly is global shape?

Diverge from a local solution and examine what 
emerges? Global Shape?

Challenge

Model Decision : Tiger

Solution

Idea
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Force a CNN to be different 
than a model using a purely 
local strategy to solve the 
same task

Why is this important?

BagNets can only take a local-strategy to solve a task
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* stop-grad in BagNet allows it to “soak up” all the possible local features that it can

Lcov =
1
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(Corr(X)i,j)
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